UCLA COMPUTATIONAL AND APPLIED MATHEMATICS Accelerated Solutions of Nonlinear Equations Using Stabilized Runge-Kutta Methods

نویسندگان

  • Christopher R. Anderson
  • Christopher J. Elion
  • CHRISTOPHER R. ANDERSON
  • CHRISTOPHER J. ELION
چکیده

In this paper we discuss the use of stabilized Runge-Kutta methods to accelerate the solution of systems of nonlinear equations. The general idea is to seek solutions as steady state solutions of an associated system of ordinary differential equations. A class of stabilized RungeKutta methods are derived that can be used to efficiently evolve the associated system to steady state. Computational results for a set of reaction-diffusion equations and a set of Schroediner-Poisson equations are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

Periodic Solutions of the Duffing Harmonic Oscillator by He's Energy Balance Method

Duffing harmonic oscillator is a common model for nonlinear phenomena in science and engineering. This paper presents He´s Energy Balance Method (EBM) for solving nonlinear differential equations. Two strong nonlinear cases have been studied analytically. Analytical results of the EBM are compared with the solutions obtained by using He´s Frequency Amplitude Formulation (FAF) and numerical solu...

متن کامل

Jeffery Hamel Flow of a non-Newtonian Fluid

This paper presents the Jeffery Hamel flow of a non-Newtonian fluid namely Casson fluid. Suitable similarity transform is applied to reduce governing nonlinear partial differential equations to a much simpler ordinary differential equation. Variation of Parameters Method (VPM) is then employed to solve resulting equation. Same problem is solved numerical by using Runge-Kutta order 4 method. A c...

متن کامل

2-stage explicit total variation diminishing preserving Runge-Kutta methods

In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...

متن کامل

Numerical smoothness and error analysis for RKDG on the scalar nonlinear conservation laws

The new concept of numerical smoothness is applied to the RKDG (Runge-Kutta/Discontinuous Galerkin) methods for scalar nonlinear conservations laws. The main result is an a posteriori error estimate for the RKDG methods of arbitrary order in space and time, with optimal convergence rate. In this paper, the case of smooth solutions is the focus point. However, the error analysis framework is pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004